

General Presentation

PEKK Powder Coatings

General properties of Poly (Aryl Ether Ketone)

- Aryl groups, Ether and Keto linkages have very high thermal stability
- Resulting chemical backbone and crystalline structures offer an impressive combination of properties :
 - Outstanding high temperature performance
 - n Heat Deflection Temperature 150 170°C for neat resins
 - Continuous Use Temperature 250 260°C, short term exposure up to 300°C
 - **I** Unique combination of strength, stiffness, impact resistance, wear resistance
 - Excellent combustion resistance properties
 - n Inherently flame retardant, low level of smoke
 - Resistance to virtually all organic and non organic chemicals
 - n High resistance to hydrolysis
 - Only sensitive to very agressive reagents (fuming sulfuric and nitric acid, methylene chloride)
 - High dielectric strength and good insulating properties
- Some known limitations
 - UV radiation sensitivity
 - Processing requires very high temperatures

PEKK among PAEK polymers

PEKK presents two distinctive features

- A first one : more keto and less ether linkages
 - n Leads to higher Tm, higher Tg, with benefits for different mechanical properties

A second one : some *tilted* keto linkages in the chain

- n Thanks to Isophtaloyl moieties instead of only terephtaloyl ones
- n Allows to modulate crystallinity, Tm and crystallization rate
- n Gives an access to co-polymers, broadening possibilities in processing and applications

Tm and Tg increase with ketone linkages ratio

- Keto linkages are less flexible than Ether linkages
- => Stiffer polymer chains => Higher Tg
- Keto linkages enhance packing efficiency of unit-cells
- => Larger crystal binding energy

=> Higher Tm $PEKK \quad = \begin{array}{c} & & \\$

PEEK

PPO

T&I moieties give access to a Co-Polymer system

Co-Polymer system

- Variable isomer ratio Terephtalic Acid (T) & Isophtalic Acid (I)
- Structural variation with T/I ratio

n PEKK C	T/I = 80/20, Crystalline	Tg = 163°C	Tm = 360°C
n PEKK SP	T/I = 60/40, Nearly amorphous	Tg = 155°C	Tm = 303°C
n PEKK D*	T/I = 70/30, Crystalline	<i>Tg</i> = 161°C	<i>Tm</i> = 332°C
* Development g	rade		
To be compared	with		
n PEEK	Crystalline	Tg = 143°C	Tm = 343°C

Property	PEKK-C	PEKK-SP	PEEK
Color	Beige	Translucent	Beige
Specific Gravity	1.31	1.28	1.30
Tensile Strength (psi)	16,000	13,000	16,000
Tensile Modulus (psi)	640,000	500,000	540,000
Elongation @ Brk	12%	80%	20%
Flexural Strength (psi)	28,000	20,000	25,000
Flexural Modulus (psi)	660,000	490,000	620,000
Compression Strength (psi)	30,000	15,000	17000
HDT @ 1.8 MPa	175	141	156
Tg (°C)	163	155	143
Tm (°C)	360	303	343

What is PEKK among High performance coatings?

Powders for coating

ARKEMA

The world is our inspiration

Benefits of PEKK vs competitive materials

Advantages vs. PEEK

- On massive parts, no cracking observed when cooling is performed in air (for PEKK C)
- Better wetting
- Better adhesion (NFT 58-112)
- Better impact resistance (WIS 4-52-01; thickness 400µm)
 - n PEKK C : 8J ; PEKK SP > 12J ; PEEK Vicote 702 : 4J

Process improvement:

- Lower processing temperature for SP
- Less sprayings required to reach a same thickness

No Crack after cooling

Thickness from 3 to 6mm, Hot spray **ð** PEKK C > PEEK

nPEEK coatings cooled in air cracks

ⁿNo crack with PEKK C

L With PEEK J With PEKK

Better Adhesion

Standard NF T58-112 for adhesion measurements

Sample conditioning : Temperature 20°C +/-2°C ; relative humidity 65% +/-5%

J With PEKK

Better adhesion

Better wetting with PEKK

Fair wetting in the groove
(same as PEEK)

 Good wetting in the hole

(better than PEEK)

Non-welded angle (better than PEEK)

Better impact resistance

Visual Coating aspect :

-PEKK SP : Rigid

-PEKK C : Brittle

-Peek : Very brittle

Processing guide

Surface preparation :

The parts should be clean, free of grease or oil and also grit blasted.

Operating conditions :

- 1 <u>1- Coating</u> :
 - n Hot spraying using an electrostatic gun with no voltage is recommended
 - n The preheated metallic parts are sprayed and then, post-fused until the powder is completely molten.
 - n Surface temperature of :
 - o 390°C for PEKK-C to melt and form a film
 - 330°C for PEKK-SP
 - the post-fusing time needed to melt the powder depends on the thickness and design of the part
 - n If necessary, this process can be repeated several times to build up and reach the expected thickness. Eventually the first spraying could be done on cold parts.
- 1 2- Cooling :
 - PEKK-C : cooling in air allow to recover the initial crystallinity of the product ; cooling in water requires an annealing at 200°C to recover the initial crystallinity, annealing time depends on the thickness and configuration of the part (30 min for PEKK-C if the parts are already at the right temperature).

Potential Application of interest

Chemical, Mining, Oil & Gas Industries: Pipe, Cylinders & Vessels

- Requirements:
 - Corrosion Resistance
 - Heat Resistance
 - Abrasion Resistance
 - Adhesion
 - Permeation Resistance
- Potential Applications:
 - Wear Pads
 - Pump and Valve Surface
 - Pipe IDs
 - Sensors

Discs and Brushes Clean Pipe Wall Debris Removed Due to Turbulence

Potential Application of interest

Industrial

- Requirements:
 - Corrosion Resistance
 - Heat Resistance
 - Electrical Properties
 - Abrasion Resistance
 - Adhesion
- Potential Applications:
 - Electric motor Bearing surfaces
 - ✓ Thrust Pads
 - ✓ Thrust Washers
 - Pipes
 - Valves
 - Pumps
 - Bearing/Bushing surfaces

